Water Cycle Management Plan to Support Development Application

133 Somersby Falls Rd, Somersby

Prepared for Stateline Asphalts Pty Ltd

Our Ref: 23053-WCMP-1.2

6 November 2024

CUBO CONSULTING PTY LTD - ABN 46 610 277 462 Elizabeth Court, Shop 16, 30 Karalta Rd, Erina PO BOX 315 AVOCA BEACH NSW 2251 Email: <u>admin@cubo.net.au</u> Web: <u>www.cubo.net.au</u> **Phone: 02 4326 0990**

Document Information

Prepared for	Stateline Asphalts Pty Ltd
Project Name	Water Cycle Management Plan to Support Development Application
Job Reference	23053
Date	6 November 2024

Contact Information

Cubo Consulting Pty Ltd ABN 46 610 277 462

Elizabeth Court Shop 16, 30 Karalta Road Erina NSW 2250

Telephone: 02 4326 0990

Document Control							
Author Reviewer							
version	Date	Name	Initials	Name	Initials		
1.0	02/11/23	Ian Black	IB	Doug Black	DB		
1.1	17/04/24	Ian Black	IB	Doug Black	DB		
1.2	06/11/24	Doug Black	DB	-	-		

Table of Contents

1	Executive Summary	4
2	Background Information	5
3	Site Context	5
4	Proposed Development	6
5	Stormwater Plan	6
5.1	Site Constraints	6
5.2	Water Conservation Target	6
5.3	Water Retention Target	7
5.4	Site Discharge Index (SID)	7
5.5	MUSIC Model	8
5.6	DRAINS Model	10
5.7	Overland Drainage Target	11
5.8	Flooding Target	11
6	Operation and Maintenance Plan	11
7	References	11
8	Appendices	
Α.	Cubo Drawings	12
B.	MUSIC Model Outputs	12
C.	DRAINS Model Outputs	12
D.	Third Part Product Brochures	12

1 Executive Summary

Cubo Consulting Pty Ltd has been engaged by Stateline Asphalts Pty Ltd to prepare a water cycle management plan (WCMP) to support the development application (DA) submission to the Central Coast Council for the proposed industrial development at 133 Somersby Falls Rd, Somersby.

The report concludes that:

- 1. Peak post development flow rates can be kept near to or below pre-development flow rates in all storm events up to and including the 1% AEP storm with the proposed onsite detention system.
- 2. Water quality requirements can be met with the proposed treatment train.
- 3. The design satisfies the requirements of Central Coast Council DCP 2022, Chapter 3.1.

Supporting design drawings are contained at **Appendix A**.

Yours Faithfully,

Prepared by Doug Black Engineer

2 Background Information

This document presents the WCMP to support the complying development certification submission to the Central Coast Council for the proposed industrial development at Lot 3 DP712505, 125 Somersby Falls Road, Somersby.

3 Site Context

The proposed development site is bound to the east by Somersby Falls Rd and surrounded by vegetation from all other sides.

The proposed development site has an area of approximately 1.01 ha and is generally sloping, generally falling at a grade of approximately 6.5 percent from the northwest corner of the property to the southeast corner of the property frontage on Somersby Falls Rd. Based on soil samples from nearby sites, the underlying soils are predominantly sandy soils with low run off.

Aerial photography of the existing site is presented in Figure 3-1 below.

Figure 3-1 Existing Site (Source – SIX Maps)

4 Proposed Development

The proposed development is an asphalt processing facility with offices and parking.

Proposed plans for the site are contained at Appendix A.

5 Stormwater Plan

This WCMP has been developed to align with the objectives in Central Coast Council's Chapter 3.1 (Floodplain Management and Water Cycle Management) from DCP 2022. These include to:

- 1) Maintain and restore natural water balance whilst reducing the cost of providing and maintaining water infrastructure in a sustainable and efficient manner.
- Reduce risk to life and damage to property by restricting and controlling building and other development so that it minimises risks to residents and those involved in rescue operations during floods.
- 3) Reduce nuisance and high-level flooding and the cost of providing and maintaining flood mitigation infrastructure whilst improving water quality in streams and groundwater.
- 4) Reduce potable water demand by using stormwater as a resource.
- 5) Protect and enhance natural water systems (creeks, rivers, wetlands, estuaries, lagoons and groundwater systems).
- 6) Protect and enhance the water quality, by improving the quality of stormwater runoff from the urban catchments.
- Integrate stormwater management systems into the landscape in a manner that provides multiple benefits, including water quality protection, stormwater retention and detention, public open space and recreational and visual amenity.

5.1 Site Constraints

Site constraints include the following:

- The legal point of connection to discharge stormwater from the site is via an interalotment drainage pit in the south-east corner of the property.
- Stormwater runoff from properties to the north and west should be diverted by swales within the boundaries of the property.

5.2 Water Conservation Target

In accordance with DCP 2022, Section 3.1.11.1 the target for potable water reduction is 40%.

It is recommended that the additions and alterations incorporate the following WELS rated devices to meet the 40% reduction in potable water:

- 4-star dual-flush toilets
- 3-star showerheads
- 4-star taps (for all taps other than bath outlets and garden taps)
- Water efficient washing machines and dishwashers, wherever possible.

Dual Plumbing

As noted in Section 5.3.1 of this report, rainwater reuse is proposed for landscape irrigation and toilet flushing within the office facilities and caretaker's accommodation.

5.3 Water Retention Target

The minimum Stormwater Retention Volume (SRV) as required by DCP 2022, Section 3.1.11.2.4 is calculated from the following formula.

 $SRV = 0.01A(0.02F)^2$ where: SRV = stormwater retention volume (m³)

A = total site area $(m^2) - 10,107 m^2$

F =fraction impervious (%) – 76%

Developed site imperviousness is estimated to be 93%, thus the required stormwater retention volume is as follows:

Stormwater Retention Volume (SRV) = 233.4 m³

The proposed development will have a 234m³ detention tank. This will ensure the Central Coast Council Water Retention Target is met.

5.3.1 Rainwater Tank

DCP 2022 Section 3.1.11.2.4 recommends water usage for residential households to be 5 L/day per square metre of roof area. As the development includes a 347m² building containing an office, driver amenities and caretaker facilities.

The roof area of the office and amenities building is 347 m^2 . This equates to 1,735 L of water usage per day. Based on Table 3 of DCP 2022 Section 3.1.11.2.4, toilet flushing, and landscape irrigation are estimated to each account for 20% of the total water usage, 40% in total or 4,858 L/week.

The total roof area of the proposed development directed to the rainwater tank is approximately 347m². Based on an average annual rainfall at Somersby of 1,140 mm, the available weekly rainwater supply is 7,586 L.

A 10kL rainwater tank will provide water for 14 days (from full). The rainwater tank will need to be installed with a mains water top up system and should include a first flush device. All downpipes should be connected to the rainwater tank.

5.4 Site Discharge Index (SID)

The Site Discharge Index (SID) as described in Section 6.7.7.3.3 of DCP 2013 is calculated from the following equation for:

The proposed development connects the almost entire paved area of the developed site to the proposed site treatment devices. Only the front portion of the vehicle access crossing within front boundary setback drains directly to the street, This portion of the driveway has a total area of approximately 50m².

The development's SID is therefore:

Site Development Index (SID) = 0.5%

DCP 2022, Section 3.1.11.3.3 requires the SID to be less than 10%. The development's SID is therefore in compliance with this requirement.

5.5 MUSIC Model

A MUSIC model (set up shown in Figure 5-1) was prepared for the development site to determine the pollutant reduction of the treatment train.

Figure 5-1 MUSIC model arrangement

Central Coast Council requires, as a minimum, the following reductions in total pollutant load, compared to untreated runoff from the predeveloped site.

Table 5-1	Minimum	pollutant	reduction	targets
-----------	---------	-----------	-----------	---------

Pollutant	Minimum Reduction
Total Suspended Solids (TSS)	80%
Total Phosphorus (TP)	45%
Total Nitrogen (TN)	45%
Gross Pollutants	80%

5.5.1 Base Information

The MUSIC model was prepared in computer model Version 6.3.1908.

MUSIC modelling parameters were adopted using the Central Coast Council upland MUSIC-link data. The model was run using Sydney rainfall data over a rainfall period of 20 years (January 1974 to December 1993) at a time-step of 6 minutes.

Areas for each input node were as follows:

- Northern retaining wall and landscaping (Urban Sealed Roads) to treatment train 550 m², 60% impervious
- Paved Site (Urban Industrial) to treatment train 7,750 m², 100% impervious
- Southern and eastern landscaping (Revegetated Land) 930 m², 0% impervious

5.5.2 Treatment Nodes

The treatment nodes proposed as part of the water cycle treatment train include:

1. Pit Insert Baskets (ATLAN Stormsacks - SQIDEP verified)

- 2. Detention Basin (ATLAN Megavault)
- 3. Swale
- 4. GPT (ATLAN Vortceptor IVR.100 SQIEP verified)

5.5.3 Pit Insert Baskets

The model includes pit insert baskets in each pit in the paved areas, ATLAN (formerly SPEL) Stormsacks. The Stormsack collects litter, sediment, and bound oils at the pit. The product brochure has been included in **Appendix D**.

5.5.4 Detention Tank

A detention tank has been included in the MUSIC model with volume based on the information in Section 5.6.4. The product brochure has been included in **Appendix D**.

5.5.5 GPT

A GPT has been modelled at the end of the treatment train, in this case an ATLAN (formerly SPEL) Vortceptor IVR.100. This unit collects various pollutants that make it through the stormsacks, and treats flows of up to 100L/s. The product Brochure has been included in Appendix D.

5.5.6 Swale

The landscaped areas have been assumed to fall to a swale, concentrating flows to the receiving node.

5.5.7 Results

Results of the MUSIC model are summarised in the table below. The full MUSIC-link report is contained at **Appendix B**.

Table 5-2 Summary of MUSIC model results

Pollutant	Minimum Reduction	Achieved Reduction	Comments
Flow		0.2%	
Total Suspended Solids (TSS)	80%	98.2%	Treatment is greater than target
Total Phosphorus (TP)	45%	92.5%	Treatment is greater than target
Total Nitrogen (TN)	45%	62%	Treatment is close to target
Gross Pollutants	80%	100%	Treatment is greater than target

The results show that the treatment train meets all the pollutant reduction targets for required by Central Coast Council.

5.6 DRAINS Model

A DRAINS model has been developed for the site based on the stormwater plan (see **Appendix A**) to ensure the development meets Central Coast Council site discharge requirements.

5.6.1 Model Parameters

The model was set up in DRAINS version 2023.06.8578.17142 based on the following parameters:

Parameter	Value
Paved (impervious area depression storage	1 mm
Supplementary area depression storage	1 mm
Grassed (pervious) area depression storage	5 mm
Soil Type	2
Rainfall	Specific to the site
Antecedent Moisture Condition	3

5.6.2 Catchments

Critical duration is estimated using the Kinematic Wave equation based on the following parameters:

$$t_c = \frac{6.94(L.\,n^*)^{0.6}}{I^{0.4}.\,S^{0.3}}$$

where: t_c is the time of concentration

L is the overland flow path length = 70 m of pervious and 30 m for impervious

 n^* is the surface roughness coefficient = 0.1 for grassed areas and 0.012 for impervious areas

S is the site slope = variable between 1% and 30%

I is the rainfall intensity in mm/hr, this is set during each run of the DRAINS model

Five (5) minutes is typically considered to be the minimum critical duration for catchment modelling, and so has been adopted for all catchments within the model.

The predeveloped site was estimated to be 0% impervious.

The post-developed site used the following total impervious and pervious areas:

- Impervious area = 7,479 m²
- Pervious area = 2,281 m²

The full roof area of the office is assumed to drain to the rainwater tank then to the on-site detention system. The rainwater tank was assumed to be full and omitted from the model.

5.6.3 Results

Results of the DRAINS model are contained in **Appendix C**. The peak outflows from the DRAINS model are summarised in Table 5-3 below.

	•	-	
Storm Event	Predeveloped Flows (L/s)	Developed Flows (L/s)	Comments
1EY	95	58	Developed flows less than predeveloped flows
50%	146	68	Developed flows less than predeveloped flows
20%	250	92	Developed flows less than predeveloped flows
10%	362	120	Developed flows less than predeveloped flows
5%	445	251	Developed flows less than predeveloped flows
2%	554	324	Developed flows less than predeveloped flows
1%	666	431	Developed flows less than predeveloped flows

Table 5-3 Summary of DRAINS peak outflows

The results show that the proposed OSD meets the Central Coast Council requirements of restricting post-development flows to within pre-development flows.

These results comply with the DCP 2022 and achieve the intent of restricting peak flows.

5.6.4 On-Site Detention

The proposed OSD volume will be provided by the detention tank. The proposed OSD will have the following:

- Invert level = 222.8 m AHD
- Top water level of 226.01 m AHD (1%AEP)

The tank is proposed to be constructed of 10 ATLAN Megavault units, 2.9m internal height, for a total void volume of 234m³.

Outlet controls will be downstream of the detention tank at splitter Pit 1/2, which will have:

- 155 mm diameter low level outlet at IL 222.7 m AHD directing low flows to the ATLAN Vortceptor
- 375mm penetration at invert level 225.2 m AHD allowing some flows in events greater than 10% AEP to bypass the GPT
- An overflow weir at IL 226.2 in the south-east corner of the carpark for extreme events.

Details of the detention tank are contained in **Appendix A**.

5.7 Overland Drainage Target

5.7.1 Upstream Catchment

Topographical conditions suggest little of the upstream catchment will flow through the site. On street kerb and gutter will prevent flows from entering the site.

5.8 Flooding Target

The site is outside flood affected areas.

6 Operation and Maintenance Plan

Operations and maintenance of the pollution control measures should be carried out to manufacturers specifications.

7 References

BMT WBM Pty Ltd. (August 2010). Draft New South Wales MUSIC Modelling Guidelines.

Central Coast Council. (2022). Development Control Plan 2022

8 Appendices

APPENDIX A

A. Cubo Drawings

APPENDIX B

B. MUSIC Model Outputs

C. DRAINS Model Outputs

D. Third Party Product Brochures

PROPOSED ASPHALT PROCESSING PLANT For: STATELINE ASPHALT PTY LTD 133 SOMERSBY FALLS ROAD, SOMERSBY NSW

DRAWING REGISTER - CIVIL WORKS

23053-CI-000	COVER SHEET, DRAWING REGISTER & LOCALITY PLAN
23053-CI-010	CIVIL SITE PLAN
23053-CI-055	STORMWATER DRAINAGE - LONG SECTIONS SHEET 1
23053-CI-056	STORMWATER DRAINAGE - LONG SECTIONS SHEET 2
23053-CI-060	BULK EARTHWORKS SITE PLAN
23053-CI-150	SWEPT PATHS - HEAVY RIGID DELIVERY VEHICLE
23053-CI-152	SWEPT PATHS - ARTICULATED DELIVERY VEHICLE
23053-CI-154	SWEPT PATHS - ASPHALT DELIVERY VEHICLE
23053-CI-156	SWEPT PATHS - TRUCK & DOG DELIVERY VEHICLE
23053-CI-200	SEDIMENT AND EROSION CONTROL PLAN
23053-CI-210	SEDIMENT AND EROSION CONTROL DETAILS
23053-CI-215	BLUE BOOK CALCULATIONS

X					
blac					
glas					
١op					
sers	4	6/11/24	REVISED - FOR APPROVAL	IB	DB
:\U	3	4/11/24	REVISED - FOR APPROVAL	IB	DB
ы	2	17/05/24	REVISED - FOR APPROVAL	IB	DB
) FIL	1	1/11/23	PRELIMINARY	IB	DB
CAE	REV	DATE	REVISIONS	DRN	СНК

LOCATION OF WORKS

LOCALITY PLAN

V	
41	
LA SAME	
	ALC REAL
	代目的で
and Childrent of	
B	
a Note to	
ESROAD	
ET ALL STREET	
RO	Contraction of the second s
	7.1
<u>N</u>	
	DRAWING STATUS:
ROCESSING FACILITY	FOR APPROVAL NOT TO BE USED FOR CONSTRUCTION PURPOSES
AD	DRAWING NUMBER: REV
	23053-CI-000 4
Y PLAN AND DRAWING REGISTER	

	DESIGNED: B		A1	CONSULTING	STATELINE ASPHA
30 40m	CHECKED: VC	COORDINATE SYSTEM:		COOO	PROPOSED ASPHALT F 133 SOMERSBY FALLS RO
@A1	RECOMMENDED: PROJECT MANAGER DATE	APPROVED: PROJECT DIRECTOR	DATE	CUBO CONSULTING PTY LTD ABN: 46 610 277 462 Suite 6, 220 The Entrance Road, Erina NSW Phone: (02) 4326 0990 Email: admin@cubo.net.au	SOMERSBY CIVIL SITE PLAN
				· · · · · · · · · · · · · · · · · · ·	

P4/3 95L/s 104L/s 125L/s 34L/s 194L/s 300mm 300mm 300mm 300mm 375mm 0.50% 0.50% 0.50% 0.49% 1.00% Datum El. 223 225.540 225.433 226.606 226.240 227.198 227.114 225.868 225.725 965 862 _ 226. 226. 227.103 Surface Level 227.29 226. 225.501 225.501 225.258 225.258 225.201 225.201 225.401 225.401 .997 7997 Invert Level 225.601 224. 80.02 93.43 10 00 ļġ.

:k\App					
sblac					
Iglas					
\dol					
sers	4	6/11/24	REVISED - FOR APPROVAL	IB	DB
:\U	3	4/11/24	REVISED - FOR APPROVAL	IB	DB
Щ	2	17/05/24	REVISED - FOR APPROVAL	IB	DB
) FIL	1	1/11/23	PRELIMINARY	IB	DB
CAL	REV	DATE	REVISIONS	DRN	СНК

STORMWATER DRAINAGE - LONG SECTIONS SHEET 1

23053-CI-055 4

RF\

DRAWING NUMBER:

DESIGNED: IB		A1	CONSULTING	STATELINE ASPHALTS PTY LTD	DRAWING STATUS: PRELIMINARY	
CHECKED: VC	COORDINATE SYSTEM:		COOÔ	PROPOSED ASPHALT PROCESSING FACILITY 133 SOMERSBY FALLS ROAD	NOT TO BE USED FOR CONSTRUCTION PURPO DRAWING NUMBER:	OSES REV
RECOMMENDED: PROJECT MANAGER DATE	APPROVED: PROJECT DIRECTOR	DATE	CUBO CONSULTING PTY LTD ABN: 46 610 277 462 Suite 6, 220 The Entrance Road, Erina NSW Phone: (02) 4326 0990 Email: admin@cubo.net.au	SOMERSBY STORMWATER DRAINAGE - LONG SECTIONS SHEET 2	23053-CI-056	POSES REV 4

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150mm A1 ON ORIGINAL

THIS DRAWING TO BE PRINTED IN COLOUR

X					
blac					
glas					
nop					
sers/	4	6/11/24	REVISED - FOR APPROVAL	IB	DB
٦̈́	3	4/11/24	REVISED - FOR APPROVAL	IB	DB
щ	2	17/05/24	REVISED - FOR APPROVAL	IB	DB
	1	1/11/23	PRELIMINARY	IB	DB
E A	REV	DATE	REVISIONS	DRN	CHK

	DESIGNED: IB	AHD A1		STATELINE ASPHA
30 40m	CHECKED: VC	COORDINATE SYSTEM:		PROPOSED ASPHALT F 133 SOMERSBY FALLS RO
@A1	RECOMMENDED: PROJECT MANAGER DATE	APPROVED: PROJECT DIRECTOR DATE	CUBO CONSULTING PTY LTD ABN: 46 610 277 462 Suite 6, 220 The Entrance Road, Erina NSW Phone: (02) 4326 0990 Email: admin@cubo.net.au	SOMERSBY BULK EARTHWORKS S
		30 40 50 60 70	80 90 100 110 120 130 140 150mm A	1 ON ORIGINAL

TILLS THE STATE OF		
ALTS PTY LTD PROCESSING FACILITY AD	DRAWING STATUS: PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURPOSES DRAWING NUMBER: REV 23053-C1-060 4	

	DESIGNED: B			STATELINE ASPHA
20 25m				
20 2311	CHECKED:	COORDINATE STSTEM.		PROPOSED ASPHALT F
	vc			133 SOMERSBY FALLS RO
(WAT	RECOMMENDED:	APPROVED:	CUBO CONSULTING PTY LTD ABN: 46 610 277 462	SOMERSBY
	PROJECT MANAGER DATE	PROJECT DIRECTOR D	Suite 6, 220 The Entrance Road, Erina NSW ATE Phone: (02) 4326 0990 Email: admin@cubo.net.au	SWEPT PATHS - HEAVY

	DESIGNED: IB		A1	CONSULTING	STATELINE ASPHA
20 25m	CHECKED: VC	COORDINATE SYSTEM:		CUOO	PROPOSED ASPHALT F
@A1	RECOMMENDED:	APPROVED: PROJECT DIRECTOR	DATE	CUBO CONSULTING PTY LTD ABN: 46 610 277 462 Suite 6, 220 The Entrance Road, Erina NSW Phone: (02) 4326 0990 Email: admin@cubo.net.au	SOMERSBY SWEPT PATHS - ARTIC
				· · · · · · · · · · · · · · · · · · ·	

120 130 140 150mm A1 ON ORIGINAL 90 100 110 50 40

	DESIGNED: IB		A1		STATELINE ASPHA
	DRAWN: DB				
20 25m	CHECKED:	COORDINATE SYSTEM:			PROPOSED ASPHALT F
@01	VC				133 SOMERSBY FALLS RO
	RECOMMENDED:	APPROVED:		CUBO CONSULTING PTY LTD ABN: 46 610 277 462	SOMERSBY
	PROJECT MANAGER DATE	PROJECT DIRECTOR	DATE	Suite 6, 220 The Entrance Road, Erina NSW Phone: (02) 4326 0990 Email: admin@cubo.net.au	SWEPT PATHS - TRUCH

	DESIGNED: B		A1	CONSULTING	STATELINE ASPHA
30 40m					
30 4011	CHECKED:	COORDINATE STSTEM.			PROPOSED ASPHALT F
	VC				133 SOMERSBY FALLS RO
(UAT	RECOMMENDED:	APPROVED:		CUBO CONSULTING PTY LTD ABN: 46 610 277 462	SOMERSBY
	PROJECT MANAGER DATE	PROJECT DIRECTOR	DATE	Suite 6, 220 The Entrance Road, Erina NSW Phone: (02) 4326 0990 Email: admin@cubo.net.au	SEDIMENT AND EROSIC
				· · · · · · · · · · · · · · · · · · ·	

IB DB

IB DB DRN CHK SCALE 1:400

17/05/24 REVISED - FOR APPROVAL

REVISIONS

1/11/23 PRELIMINARY

REV DATE

TAR PICKETS X 2.5m SELF-SUPPORTING GEOTEXTILE DIRECTION OF FLOW	SOURCE: MANAGING URBAN STORMWATER SOILS AND CONSTRUCTION FOURTH EDITION, MARCH 2004 PRODUCED BY THE DEPARTMENT OF HOUSING	SOURCE: MANAGING URBAN STORMWATER SOILS AND CONSTRUCTION FOURTH EDITION, MARCH 2004 PRODUCED BY THE DEPARTMENT OF HOUSING
ON SOIL, 150mm X 100mm TRENCH WITH COMPACTED BACKFILL AND ON ROCK, SET INTO SURFACE CONCRETE SECTION DETAIL 1.5m STAR PICKETS AT MAX 2.5m CENTRES 20m MAX CENTRES 20m MAX S STATED OTHERWISE ON SWMP/ESCP)	CONSTRUCTION SITE VINOFF DIRECTED TO SEDMENT TRAP/FENCE OGB 20 ROADBASE OR SOMMAGGREGATE THETERMIXING OF SUBGRADD TO PREVENT INTERMIXING OF SUBGRADD EAND DARSE MATERIALS AND TO MAINTAIN GOOD PROPERTIES OF THE SUB BURST STRENGTH (AS3706.9-90) OF 2500 N	EARTH BANK FLOW 21500PE MNN 21500PE MNN SEDIMENT FENCE
IN THE DRAWING TO LIMIT THE CATCHMENT AREA HOULD BE SMALL ENOUGH TO LIMIT WATER FLOW IF R SECOND IN THE DESIGN STORM EVENT, USUALL PE LINE OF THE FENCE FOR THE BOTTOM OF THE UNDAT 2.5 METRE INTERVALS (MAX) AT THE Y STAR PICKETS ARE FITTED WITH SAFETY CAPS. OPE SIDE OF THE POSTS ENSURING IT GOES TO WITH WIRE TIES OR AS RECOMMENDED BY THE ICALLY PRODUCED FOR SEDIMENT FENCING. THE T SATISFACTORY. WITH A 150 MM OVERLAP. IC AND COMPACT IT THOROUGHLY OVER THE	 STRIP THE TOPSOIL, LEVEL THE SITE AND COMPACT THE SUBGRADE. COVER THE AREA WITH NEEDLE-PUNCHED GEOTEXTILE. CONSTRUCT A 200MM THICK PAD OVER THE GEOTEXTILE USING ROAD BASE OR 30MM AGREGATE.\ ENSURE THE STRUCTURE IS AT LEAST 15 METRES LONG OR TO BUILDING ALIGNMENT AND AT LEAST 3 METRES WIDE. WHERE A SEDIMENT FENCE JOINS ONTO THE STABILISED ACCESS, CONSTRUCT A HUMP IN THE STABILISED ACCESS TO DIVERT WATER TO THE SEDIMENT FENCE 	 PLACE STOCKPILES MORE THAN 2 (PREFERABLY 5) METRES FROM EXISTING VEGETATION, CONCENTRATED WATER FLOW, ROADS AND HAZARD AREAS. CONSTRUCT ON THE CONTOUR AS LOW, FLAT, ELONGATED MOUNDS. WHERE THERE IS SUFFICIENT AREA, TOPSOIL STOCKPILES SHALL BE LESS THAN 2 METERS IN HEIGHT. WHERE THEY ARE TO BE IN PLACE FOR MORE THAN 10 DAYS, STABILISE FOLLOWING THE APPROVED ESCP OR SWMP TO REDUCE THE C-FACTOR TO LESS THAN 0.10. CONSTRUCT EARTH BANKS (STANDARD DRAWING 5-5) ON THE UPSLOPE SIDE TO DIVERT WATER AROUND STOCKPILES AND SEDIMENT FENCSE (STANDARD DRAWING 6-8) 1 TO 2 METRES DOWNSLOPE.
INT FENCE SD 6-8	STABILISED SITE ACCESS SD 6-14	STOCKPILES SD 4-1
KERB-SIDE INLET	SEDIMENT BARKIERS TO BE USED ONL PERMITS AND WHERE SAFETY TO PASE FLOW 60°	SING TRAFFIC IS NOT AFFECTED
GRAVEL-FILLED WIRE MESH OR GEOTEXTILE `SAUSAGE`	GRAVEL FILLE	D SAUSAGE
	TEMPORARY GUTTER GROSS	POLLUTANT/SEDIMENT TRAP
TIMBER SPACER TO SUIT	COARSE GRAVEL ROLLED IN NE 200mm HIGH & PLACED HARD PLACE SANDBAGS	TTING MATERIAL TOTALING AGAINST FACE OF KERB
ED WHERE SPECIFIED IN AN APPROVED	AROUND PERIMETER OF GRATE TO LIMIT SILTATION ON LID	TIE GEOFABRIC OR EQUIVALENT TO TOP OF GRATE
OR WIRE MESH LONGER THAN THE LENGTH OF GRAVEL.		
T LEAST A 100mm SPACE BETWEEN IT AND THE CER BLOCKS.		
JTE FOR THE MESH OR GEOTEXTILE PROVIDING EACH OTHER AND SEDIMENT - LADEN WATERS		ACE INLET SEDIMENT
LINLET FILTER SD 6-11	STRUCTURE SHALL B	E REGULARLY DESILTED
30 40m 30 40m CHECKED: VC @A1 RECOMMENDED: PROJECT MANAGER 0	DATUM: A1 COORDINATE SYSTEM: A1 APPROVED: CUBO CONSULTING PTY LTD ABN: 46 610 277 462 DATE PROJECT DIRECTOR DATE PROJECT DIRECTOR 0 20 30 40 50 60 70 80 90 100 10 120 130 140 150mm A1 STATELINE AS	SPHALTS PTY LTD DRAWING STATUS: HALT PROCESSING FACILITY NOT TO BE USED FOR CONSTRUCTION PURPOSES LS ROAD DRAWING NUMBER: ROSION CONTROL DETAILS REV

Site area Total catchment area (ha) Disturbed catchment area (ha) Soil analysis (enter sediment ty Sediment Type (C, F or D) if known: Soil Texture Group Rainfall data Design rainfall depth (no of days) Design rainfall depth (percentile) x-day, y-percentile rainfall event (mm) Rainfall R-factor (if known) IFD: 2-year, 6-hour storm (if known) RUSLE Factors Rainfall erosivity (R-factor) Soil erodibility (K-factor) Slope length (m)

Slope gradient (%)

Length/gradient (LS-factor)

Erosion control practice (P-factor)

Ground cover (C-factor)

Sediment Basin Design Criteria

Storage (soil) zone design (no of months) Cv (Volumetric runoff coefficient)

Calculations and Type D/F Sedi

- Soil loss (t/ha/yr)
- Soil Loss Class
- Soil loss (m3/ha/yr)
- Sediment basin storage (soil) volume (m3)
- Sediment basin settling (water) volume (m3)
- Sediment basin total volume (m3)

¥.										
glasplac					DESIGNE	D: IB		A1	CONSULTING	STATELINE ASPHA
nob/s				0 10 20 30 40m	CHECKE).	COORDINATE SYSTEM:			PROPOSED ASPHALT F
ere	4 6/11/24	REVISED - FOR APPROVAL IB	DB		ONLONE					
	3 4/11/24	REVISED - FOR APPROVAL IB	DB			VC				133 SOMERSBY FALLS RO
Ϊ	2 17/05/24	REVISED - FOR APPROVAL IB	DB	SCALE 1.400	RECOMM	ENDED:	APPROVED:		CUBO CONSULTING PTY LTD	SOMERSBY
ī.	1 1/11/23	PRELIMINARY	DB						ABN: 46 610 277 462 Suite 6, 220 The Entrenes Bood, Erine NSW	
	REV DATE	REVISIONS DRN	СНК		PROJE	CT MANAGER DATE	PROJECT DIRECTOR	DATE	Phone: (02) 4326 0990 Email: admin@cubo.net.au	BLUE BOOK CALCULAT
								70		

\bigcap				
Sub-catchment or Name of Structure	Notes			
All				
1.01				
1.01				
pe if known, or laboratory p	article size data)			
D	From Appendix C (if known)			
D	Automatic calculation from above			
5	See Section 6.3.4 and, particularly, Ta	ble 6.3 on pages 6-24 and 6-25.		
85				
45.8				
3300	Only need to enter one or the other her	e		
3300	Auto-filled from above			
0.023	RUSLE LS factor calculated for a high	rill/interrill ratio.		
75				
5				
1.14				
1.3			a	
1			а А	
(for Type D/F basins only. L	eave blank for Type C bas.	ins)	a	
2	Minimum is generally 2 months		a	
0.69	See Table F2, page F-4 in Appendix F		1	
iment Basin Volumes			1	
113			л.	
1	See Table 4.2, page 4-13	·		
87	Conversion to cubic metres			
15	See Sections 6.3.4(i) for calculations			
319	See Sections 6.3.4(i) for calculations		1	
334			1	
	1:			
30 40m	AHD A1 CONSULTING	PROPOSED ASPHALTS PTY L	TD FACILITY	SES
@A1 CHECKED: COOK RECOMMENDED: APPRO		133 SOMERSBY FALLS ROAD		REV
PROJECT MANAGER DATE PRO	ABN: 46 610 277 462 Suite 6, 220 The Entrance Road, Erina NSW JECT DIRECTOR DATE Phone: (02) 4326 0990 Email: admin@cubo.net.au	BLUE BOOK CALCULATIONS	23053-01-215	4

Sub-catchment or Name of			
Structure	Notes		
All			
1.01			
1.01			
pe if known, or laboratory p	article size data)		
D	From Appendix C (if known)		
D	Automatic calculation from above		
5	See Section 6.3.4 and, particularly, Tabl	e 6.3 on pages 6-24 and 6-25.	
85			
45.8			
3300	Only need to enter one or the other here		
3300	Auto-filled from above		
0.023	RUSLE LS factor calculated for a high ri	Il/interrill ratio.	
75			
5			
1.14			
1.3			
1			
(for Type D/F basins only. L	eave blank for Type C basi	ns)	
2	Minimum is generally 2 months		
0.69	See Table F2, page F-4 in Appendix F		
iment Basin Volumes			
113			
1	See Table 4.2, page 4-13		
87	Conversion to cubic metres		
15	See Sections 6.3.4(i) for calculations		
319	See Sections 6.3.4(i) for calculations		
334			
DESIGNED: IB DATUM		STATELINE ASPHALTS PTY LTD	DRAWING STATUS: PRELIMINARY
30 40m CHECKED: COORD	DINATE SYSTEM:	PROPOSED ASPHALT PROCESSING FACILITY 133 SOMERSBY FALLS ROAD	NOT TO BE USED FOR CONSTRUCTION PURPOSES DRAWING NUMBER: REV
@A1 RECOMMENDED: APPRO	VED: CUBO CONSULTING PTY LTD ABN: 46 610 277 462 Suite 6, 220 The Entrance Road, Erina NSW Phone: (02) 4326 0990 Email: admin@cubo pet au	SOMERSBY BLUE BOOK CALCULATIONS	23053-CI-215 4

music@link

MUSIC-link Report

Project Details		Company Detail	S	
Project:	23053 - 133 Somersby Falls Rd	Company:	Cubo Consulting	
Report Export Date:	5/11/2024	Contact:	Doug Black	
Catchment Name:	23053 v4	Address:		
Catchment Area:	0.923ha	Phone:	4326 0990	
Impervious Area*:	87.54%	Email:	doug.black@cubo.au	
Rainfall Station:	66062 SYDNEY			
Modelling Time-step:	6 Minutes			
Modelling Period:	1/01/1974 - 31/12/1993 11:54:00 PM			
Mean Annual Rainfall:	1297mm			
Evapotranspiration:	1261mm			
MUSIC Version:	6.3.0			
MUSIC-link data Version:	6.35			
Study Area:	Upland			
Scenario:	Central Coast Development			

* takes into account area from all source nodes that link to the chosen reporting node, excluding Import Data Nodes

Treatment Train Effectiven	ess	Treatment Nodes		Source Nodes			
Node: Receiving Node	Reduction	Node Type	Number	Node Type	Number		
Row	0.191%	Detention Basin Node	1	Urban Source Node	3		
TSS	98.2%	Swale Node	1				
TP	92.4%	GPT Node	3				
TN	61.9%						
GP	100%						

Comments

NOTE: A successful self-validation check of your model does not constitute an approved model by Central Coast Council MUSIC-*link* now in MUSIC by eWater – leading software for modelling stormwater solutions

music@link

Passing Pa	arameters				
Node Type	Node Name	Parameter	Min	Max	Actual
GPT	11x Atlan Stormsack (SQIDEP Verified) 600sq	Hi-flow bypass rate (cum/sec)	None	99	0.275
GPT	7 x Atlan Stormsack (SQIDEP Verified) 600sq	Hi-flow bypass rate (cum/sec)	None	99	0.175
GPT	Atlan Vortceptor (SQIDEP Verified) IVR.100	Hi-flow bypass rate (cum/sec)	None	99	0.1
Receiving	Receiving Node	% Load Reduction	None	None	0.191
Receiving	Receiving Node	GP % Load Reduction	90	None	100
Receiving	Receiving Node	TN % Load Reduction	45	None	61.9
Receiving	Receiving Node	TP % Load Reduction	45	None	92.4
Receiving	Receiving Node	TSS % Load Reduction	80	None	98.2
Swale	Swale	Bed slope	0.02	0.05	0.03
Urban	Urban	Baseflow Total Nitrogen Mean (log mg/L)	0.11	0.11	0.11
Urban	Urban	Baseflow Total Nitrogen Mean (log mg/L)	-0.05	-0.05	-0.05
Urban	Urban	Baseflow Total Nitrogen Mean (log mg/L)	0.11	0.11	0.11
Urban	Urban	Baseflow Total Phosphorus Mean (log mg/L)	-0.85	-0.85	-0.85
Urban	Urban	Baseflow Total Phosphorus Mean (log mg/L)	-1.22	-1.22	-1.22
Urban	Urban	Baseflow Total Phosphorus Mean (log mg/L)	-0.85	-0.85	-0.85
Urban	Urban	Baseflow Total Suspended Solids Mean (log mg/L)	1.2	1.2	1.2
Urban	Urban	Baseflow Total Suspended Solids Mean (log mg/L)	1.15	1.15	1.15
Urban	Urban	Baseflow Total Suspended Solids Mean (log mg/L)	1.2	1.2	1.2
Urban	Urban	Stormflow Total Nitrogen Mean (log mg/L)	0.3	0.3	0.3
Urban	Urban	Stormflow Total Nitrogen Mean (log mg/L)	0.3	0.3	0.3
Urban	Urban	Stormflow Total Nitrogen Mean (log mg/L)	0.34	0.34	0.34
Urban	Urban	Stormflow Total Phosphorus Mean (log mg/L)	-0.6	-0.6	-0.6
Urban	Urban	Stormflow Total Phosphorus Mean (log mg/L)	-0.66	-0.66	-0.66
Urban	Urban	Stormflow Total Phosphorus Mean (log mg/L)	-0.3	-0.3	-0.3
Urban	Urban	Stormflow Total Suspended Solids Mean (log mg/L)	2.15	2.15	2.15
Urban	Urban	Stormflow Total Suspended Solids Mean (log mg/L)	1.95	1.95	1.95
Urban	Urban	Stormflow Total Suspended Solids Mean (log mg/L)	2.43	2.43	2.43

Only certain parameters are reported when they pass validation

music@link

NOTE: A successful self-validation check of your model does not constitute an approved model by Central Coast Council MUSIC-*link* now in MUSIC by eWater – leading software for modelling stormwater solutions

PIT / NODI Name N PreDev	E DETAILS Type Node	Ve Family Siz	ersion 15 ze l	Ponding Volume (cu.m)	Pressure Change Coeff. Ku	Surface Elev (m) 223	Max Pond Depth (m)	Base Inflow (cu.m/s)	Blocking Factor	x 339940.1	y 6301959	Bolt-dowr lid	id 1207811	Part Full Shock Loss	Inflow Hydrograp	Pit is h	Internal Width (mm)	Inflow is Misaligned	Minor Safe Pond Deptl (m)	Major Safe Pond Depth (m)			
P6/1 P4/4 P4/2 P4/2 P1/5 P1/4 P1/5 P1/4 P3/2 P3/1 P1/8 P3/2 P3/1 P1/7 P1/6 P5/1 P7/2 P7/1 P7/2 P7/1 N LS SE N DS P1/2a P1/1	OnGrade OnGrade OnGrade OnGrade OnGrade OnGrade OnGrade OnGrade OnGrade OnGrade OnGrade OnGrade OnGrade OnGrade OnGrade OnGrade NoGrade	NSW RTA S SA NSW RTA S SA SIP 60 SIP 6	13 14 13 12 12 12 12 12 12 12 14 10 10 10 10 10 10 10 10 11 11	re SIP re SIP re SIP 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	227,519 227,291 227,201 227,201 227,201 226,874 226,874 226,874 226,874 226,874 226,874 228,519 227,266 227,262 226,463 227,264 226,463 227,264 226,463 227,264 226,463 227,264 226,463 222,224 226,463 222,224 226,463 222,224 224,224 226,222 226,463 222,224 224,224 226,316 222,224 224,224 225,224 224,225 222,25	0.15			339730.8 339748.7 339768.2 339768.2 339816.5 339824.7 339827.4 339867.4 339867.4 339867.4 33985.1 33983.5 33983.5 33983.7 33983.6 33988.1 33988.1 339886.8 339888.1 339886.3 339885.1 339845.5 339845.1 339846.7 339845.1 339845.3 339845.1 339845.3 339845.1 339845.3 339845.1 339845.3 339845.1 339945.1 339845.1 34965.1 3496	6301955 6301955 6301953 6301953 6301947 6301944 6301942 6301937 6301937 6301963 6301964 6301951 6301966 6301952 63019128 63019128 63019128 63019128 63019125	No No No No No No No No No No No No No	23228351 6 8556886 7 9 8556887 9 8556883 1 5 8556940 23226351 23227351 8 10 232223432 23223432 23223432 23223432 23223432 23223432 23223432 23223432 23223432 23223432 23223432 23223433 23223452 23223433 23223452 23223433 23223452 23223433 23223452 23223433 23223452 23223433 23223452 23223433 23223453 232223453 23223453 23223453 23223453 23223453 2322235 23223453 232223453 2322235 23223453 2322235 23223453 2322235 23223453 2322235 23223453 2322235 2322235 2322235 2322235 232235 232235 232235 232235 2323235 2323235 23235 23235 23235 23235 23235 23235 23235 23235 23235 2335 23235 23235 2335 23235 235	1 x Ku 1 x Ku	No No No No No No No No No No No No No N	New New New New New New New New New New			0.05	0.15			
DETENTIO Name P 1/2 OSD	N BASIN DE Elev 222.7 222.8 225.65 226.05 226.05 226.4 226.5 226.7	TAILS Surf. Area No. 8 83.8 8 83.8 6 2.43 6 2.43 6 2.43 6 2.00 8 400 6 1000 2000	ot Used (Outlet Type None	εK	Dia(mm)	Centre RL	Pit Family	Pit Type	x 339897.8	у 6301930	HED No	Crest RL	Crest Leng	1 id 34106333								
SUB-CATCI Name C PreDev	HMENT DET Pit or Node N PreDev P6/1	AILS Total Pa Area Ar (ha) % 1.0107 0.1137	ived of a second	Grass Area % 100 50	Supp Area %	Paved Time (min) D 5	Grass Time (min) 5	Supp Time (min)	Paved Length (m)	Grass Length (m)	Supp Length (m)	Paved Slope(%) %	Grass Slope %	Supp Slope %	Paved Rough	Grass Rough	Supp Rough	Lag Time or Factor 0	Gutter Length (m)	Gutter (Slope F %	Sutter R FlowFactor N	ainfall Aultiplier 1	
C P6/1 C P4/2 C P1/5 C P1/4 C P1/3 C P1/4 C P1/3 C P3/2 C P3/2 C P3/1 C P1/8 C P5/1 C C P7/1 C LS C LS West C Front LS	P6/1 P4/3 P4/2 P1/5 P1/4 P1/3 P 1/2 OSD P3/2 P3/1 P1/8 P5/1 P7/2 P7/1 N LS SE N LS S P1/1	0.1137 0.1324 0.019 0.1515 0.0472 0.0654 0.013 0.013 0.0072 0.01 0.0485 0.0058 0.0189 0.0532 0.0686 0.0248	50 100 100 100 100 100 35 50 50 100 50 50 50 0 0 0 0 0	50 0 0 0 0 0 50 50 50 50 50 25 100 100) 5) 5	5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5											0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
PIPE DETA Name	ILS From	To Le	ngth	U/S IL	D/S IL	Slope	Туре	Dia	I.D.	Rough	Pipe Is	No. Pipes	Chg From	At Chg	Chg	RI	Chg	RL	etc				
Pipe-31 Pipe-18 Pipe-17 Pipe-20 Pipe-22 Pipe-22 Pipe-21 Pipe-7 Pipe-7 Pipe-7 Pipe-26 Pipe-24 Pipe-28 Pipe-36 Pipe-35 Pipe-12 Pipe-12 Pipe-8 DETAILS of Pipe	P6/1 P4/4 P4/3 P4/2 P1/5 P1/4 P1/5 P1/3 P3/2 P3/1 P1/8 P1/7 P1/6 P5/1 P7/1 P7/1 P1/2a SERVICES (Chg (m)	(m P4/4 P4/3 P4/2 P4/1 P4/3 P4/2 P1/3 P1/5 P1/5 P1/3 P1/2 P1/3 P1/2 P1/3 P1/2 P1/3 P1/2 P1/4 P1/5 P1/4 P1/5 P1/4 P1/5 P1/4 P1/5 P1/4 P1/5 P1/5 P1/4 P1/5 P1/6 P1/5 P1/6 P1/5 P1/6 P1/5 P1/6 P1/5 P1/6 P1/5 P1/1 P1/5 P1/1 P1/5 P1/1 P1/5 P1/1 P1/1 P1/5 P1/1 P1/1 P1/5 P1/1 P1/1 P1/5 P1/1 P1/1 P1/5 P1/1 P1/1 P1/5 P1/1 P1/1 P1/5 P1/1 P1/1 P1/5 P1/1 P1/1 P1/5 P1/1 P1/1 P1/5 P1/1 P1/1 P1/5 P1/1 P1/1 P1/5 P1/1 P1/1 P1/5 P1/1 P1	18.06 19.866 20.176 28.426 11.55 20.396 19.732 31.089 52.538 29.98 23.255 18.068 30.219 14.38 16.339 21.264 14.312 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(m) 225.691 225.501 225.258 225.258 225.258 225.261 224.997 224.7 226.813 226.513 226.513 226.281 225.267 225.277 225.15 224.982 222.636 Chg (m)	(m) 225.601 225.501 225.256 225.256 225.201 224.997 224.8 223.865 226.811 226.511 226.251 225.26 225.401 225.297 225.152 225.152 225.152 224.982 224.445 222.51 224.982 224.445 222.51 224.982 224.445 222.51 224.982 224.997 225.152 224.997 225.152 224.997 225.256 225.261 225.	(%) 1 0.5.1 1 0.5.2 1 0.5.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	uPVC, unde uPVC, unde	(mm) 225 300 300 300 375 225 225 225 225 225 225 225 2	(mm) 5 242 3 302 3 303 3 403 3 404 3 443 5 244 5 2	2 0.012 3 0.012 3 0.012 3 0.012 3 0.012 5 0.012 5 0.012 5 0.012 2 0.012 3 0.012 3 0.012 4 0.012 5 0.012 2 0.013 3 5 etc etc	New New New New New New New New New New		 P6/1 P4/4 P4/3 P4/2 P4/1 P1/5 P1/4 P1/5 P3/2 P3/1 P3/2 P3/1 P1/7 P1/6 P5/1 P5/1 P7/2 P7/1 P2/2 P2/1 P1/2a 		(m) 0.011046 0.01118 0.01118 0.011046 0.01118 0.011045 0.011045 0.011045 0.01118 0.01118 0.01118 0.011181 0.011181	(m) 227.519 227.29 227.201 227.103 226.932 226.874 226.662 228.572 228.669 228.552 227.715 227.745 227.745 227.265 227.898 226.281 226.281 226.317 226.334	(m) 1.40436 0.439772 0.529039 0.35384 0.757002 13.4109 0.201803 30.3857 52.5268 0.162975 0.082035 18.0568 0.451096 0.62079 0.219067 0.229067 0.229067 0.32951 0.075328 0.201312	(m) 227.56 227.288 227.198 227.102 226.928 226.928 226.928 228.629 228.527 227.046 227.029 228.527 227.046 227.029 227.58 227.889 226.366 227.029 227.56 226.362 227.55 226.361 227.56 226.319 222.815	(m) 1.61795 0.456047 0.550248 0.376032 0.76818 13.8344 0.732974 31.078 1.16337 0.450114 0.917211 0.751892 1.21948 0.122798 0.369765 1.75866	227.407 227.288 227.199 227.102 226.928 226.852 226.795 226.249 228.654 228.559 227.012 227.256 227.846 226.322 226.322 226.328 226.328	2.34332 0.460156 1.52925 1.35516 1.75713 20.3846 0.86244 2.16279 7.66311 4.57598 1.63117 2.21892 0.386333 0.938098 0.665199 5.09844	227.376 227.288 227.194 226.092 226.622 226.793 228.659 228.292 226.875 227.246 227.303 226.345 226.345 226.345 226.337 222.96	3.23292 0.482352 1.55046 1.37835 1.76831 1.07628 3.16319 23.2438 1.77119 3.21933 0.830585 1.36055 1.3625 1.30214 10.5624
CHANNEL Name	DETAILS From	то ту	rpe I	Length (m)	U/S IL (m)	D/S IL (m)	Slope (%)	Base Widt (m)	(1:?)	R.B. Slope (1:?)	Manning n	Depth (m)	Roofed										
OVERFLOV Name	V ROUTE DE From	TAILS To Tra Tir (m	avel S me I nin) (Spill Level (m)	Crest Length (m)	Weir Coeff. C	Cross Section	Safe Depti Major Sto (m)	h SafeDepth ri Minor Sto (m)	n Safe ri DxV (sq.m/sec)	Bed Slope (%)	D/S Area Contributi %	ng	id	U/S IL	D/S IL	Length (m)						
B24-4 OF123919 B16-5 OF123922 B17-6 OF123931 B18-7 B7-8 B8-9 B3-4 B14 B10 B20-19 B19-6 B21-17 B27-26 OF123938	P6/1 P4/4 P4/3 P4/2 P4/1 P1/5 P1/4 P1/5 P1/4 P3/2 P3/1 P1/8 P3/1 P1/7 P1/6 P5/1 P7/2 P7/1	P4/4 P4/3 P4/2 P4/1 P1/5 P1/4 P1/5 P1/3 P1/2 OSD P1/1 P1/7 P1/7 P1/7 P1/7 P1/5 P1/5 P4/1 P7/1 P1/1	0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.4 0.3 0.3 0.3 0.1 0.1 0.1 0.2 0.4	226.2	5	5 2	7.5 m road 7.5 m road 7.5 m road 7.5 m road 7.5 m road 7.5 m road 7.5 m road 8 m road 4 m wide p 4 m wide p 4 m wide p 4 m wide p 5 m road 8 m road 8 m road 9 m road	0.33 0.33 0.33 0.35 0.35 0.35 0.35 0.35	3 0.15 8 0.12 8 0.12 8 0.12 8 0.12 8 0.12 8 0.12 8 0.12 8 0.12 8 0.12 8 0.12 8 0.12 8 0.12 8 0.12 8 0.12 8 0.12 8 0.12 5 0.12	5 0.4 6 0.4 7 0.4	1.27 0.45 0.49 0.5 1.08 24.78 2.56 1.94 1.71 3.7 3.75 1.66 5.55 5.17	50 50 50 50 100 100 0 50 50 50 50 50 50 50 50 50 50 50 50		23222976 23223049 8556901 23223064 8556900 27 26 23222975 23222975 23222971 8556976 23222970 23222970 23222970 23222970	227.519 227.201 227.103 226.932 226.874 226.654 226.516 226.516 228.659 228.519 227.715 227.046 227.266 227.899 226.372	227.29 227.201 226.932 226.932 226.654 226.516 226.516 227.715 227.715 227.715 227.715 227.046 226.874 226.932 226.932 226.932	18.06 19.9 20.176 28.2 11.55 20.3 19.732 31.089 14.312 50.049 49.261 47.071 18.068 4.587 20.086 30.219 65.2						

B12-13	P2/2	P2/1	0.3	7.5 m road	0.3	0.15	0.4	0.9	50	30	226.463	226.316	16.339	
B13-8	P2/1	P 1/2 OSD	0.4	7.5 m road	0.3	0.15	0.4	0.32	50	28	226.316	226.249	21.264	
OF123954	N LS SE	P1/1	0.2	Deep Swale	1	0.5	0.6	1.83	0	23223460	223	222.5	27.3	
OF123952	N LS S	N LS SE	0.7	Deep Swale	1	0.5	0.6	1.44	100	23223447	224	223	69.4	
OF123956	P1/1	N DS	0.1	Deep Swale	1	0.5	0.6	3.73	0	23223468	222.5	222	13.4	
PIPE COVE	R DETAILS													

Name	Туре	Dia (mm)	Safe Cover	Cover (m)	
Pipe-31	uPVC, unde	242	0.5	1.43	
Pipe-18	uPVC, unde	303	0.5	1.38	
Pipe-17	uPVC, unde	303	0.5	1.39	
Pipe-20	uPVC, unde	303	0.5	1.36	
Pipe-19	uPVC, unde	303	0.5	1.36	
Pipe-22	uPVC, unde	386	0.5	1.25	
Pipe-21	uPVC, unde	386	0.5	1.26	
Pipe-7	uPVC, unde	386	0.5	-1.56	Unsafe
Pipe-34	uPVC, unde	242	0.5	0.99	
Pipe-14	uPVC, unde	242	0.5	1.61	
Pipe-27	uPVC, unde	242	0.5	1.19	
Pipe-26	uPVC, unde	242	0.5	0.9	
Pipe-24	uPVC, unde	242	0.5	1.23	
Pipe-28	uPVC, unde	242	0.5	0.18	Unsafe
Pipe-36	uPVC, unde	242	0.5	0.58	
Pipe-35	uPVC, unde	242	0.5	0.6	
Pipe-11	uPVC, unde	242	0.5	0.64	
Pipe-12	uPVC, unde	242	0.5	-2	Unsafe
Pipe-8	Concrete, ι	450	0.6	-0.49	Unsafe

This model has no pipes with non-return valves

DRAINS results prepared from Version 2024.07.8959.15835

PIT / NOD	E DETAILS			Version 8			
Name	Max HGL	Max Pond	Max Surfac	Max Pond	Min	Overflow	Constraint
		HGL	Flow Arrivi	Volume	Freeboard	(cu.m/s)	
			(cu.m/s)	(cu.m)	(m)		
P6/1	227.42		0.046		0.1	0	None
P4/4	227.27		0.006		0.02	0.001	Inlet Capacity
P4/3	227.21		0.061		0	0.001	Outlet System
P4/2	226.97		0.056		0.14	0	None
P4/1	226.62		0.026		0.31	0.001	Inlet Capacity
P1/5	225.86		0.043		1.01	0.005	Inlet Capacity
P1/4	225.54		0.021		1.12	0.001	Inlet Capacity
P1/3	225.3		0.02		1.22	0.002	Inlet Capacity
P3/2	227.41		0.007		1.16	0	None
P3/1	226.88		0.004		1.78	0	None
P1/8	226.59		0.005		1.92	0	None
P1/7	226.36		0		1.35	0	None
P1/6	225.87		0		1.18	0	None
P5/1	226.89		0.027		0.37	0.008	Inlet Capacity
P7/2	227.14		0.003		0.76	0	None
P7/1	225.37	226.24	0.01	0.1	0.85	0	Inlet Capacity
P2/2	225.23		0		1.23	0	None
P2/1	225.23		0		1.09	0.001	Inlet Capacity
N LS SE	223.05		0.047				
N LS S	224.04		0.035				
P1/2a	222.82		0				
P1/1	222.58		0.061				

SUB-CATCHMENT DETAILS

Name	Max	Paved	Grassed	Paved	Grassed	Supp.	Due to Storm
	Flow Q	Max Q	Max Q	Тс	Тс	Tc	
	(cu.m/s)	(cu.m/s)	(cu.m/s)	(min)	(min)	(min)	
C PreDev	0.362	0	0.362		5	5	2 10% AEP, 15 min burst, Storm 5
C P6/1	0.045	0.029	0.019		5	5	2 10% AEP, 15 min burst, Storm 3
C P4/3	0.061	0.061	0		5	4	2 10% AEP, 5 min burst, Storm 1
C P4/2	0.009	0.009	0		5	5	2 10% AEP, 5 min burst, Storm 1
C P1/5	0.07	0.07	0		5	5	2 10% AEP, 5 min burst, Storm 1
C P1/4	0.022	0.022	0		5	5	2 10% AEP, 5 min burst, Storm 1
C P1/3	0.03	0.03	0		5	5	2 10% AEP, 5 min burst, Storm 1
C P1/2	0.091	0.091	0		5	5	2 10% AEP, 5 min burst, Storm 1
C P3/2	0.005	0.002	0.003		5	5	2 10% AEP, 15 min burst, Storm 5
C P3/1	0.003	0.002	0.001		5	5	2 10% AEP, 15 min burst, Storm 3
C P1/8	0.004	0.003	0.002		5	5	2 10% AEP, 15 min burst, Storm 3
C P5/1	0.022	0.022	0		5	5	2 10% AEP, 5 min burst, Storm 1
C P7/2	0.002	0.001	0.001		5	5	2 10% AEP, 15 min burst, Storm 3
C P7/1	0.008	0.006	0.002		5	5	2 10% AEP, 15 min burst, Storm 10
C LS	0.019	0	0.019		5	5	2 10% AEP, 15 min burst, Storm 5
C LS West	0.025	0	0.025		5	5	2 10% AEP, 15 min burst, Storm 5
C Front LS	0.009	0	0.009		5	5	2 10% AEP, 15 min burst, Storm 5

PIPE DETA	ILS				
Name	Max Q	Max V	Max U/S	Max D/S	Due to Storm
	(cu.m/s)	(m/s)	HGL (m)	HGL (m)	
Pipe-31	0.044	0.96	227.369	227.267	10% AEP, 15 min burst, Storm 3
Pipe-18	0.045	0.62	227.245	227.208	10% AEP, 15 min burst, Storm 9
Pipe-17	0.098	1.35	227.12	226.965	10% AEP, 15 min burst, Storm 10
Pipe-20	0.105	1.45	226.867	226.621	10% AEP, 15 min burst, Storm 4
Pipe-19	0.125	1.73	226.246	225.864	10% AEP, 15 min burst, Storm 10
Pipe-22	0.194	1.66	225.722	225.536	10% AEP, 15 min burst, Storm 10
Pipe-21	0.217	1.86	225.432	225.3	10% AEP, 15 min burst, Storm 4
Pipe-7	0.252	2.15	225.273	225.218	10% AEP, 15 min burst, Storm 6
Pipe-34	0.005	0.47	227.41	226.885	10% AEP, 10 min burst, Storm 6
Pipe-14	0.007	0.58	226.885	226.595	10% AEP, 15 min burst, Storm 5
Pipe-27	0.011	0.81	226.595	226.362	10% AEP, 15 min burst, Storm 6
Pipe-26	0.01	1.35	226.362	225.951	10% AEP, 15 min burst, Storm 6
Pipe-24	0.013	0.27	225.865	225.864	10% AEP, 15 min burst, Storm 4
Pipe-28	0.014	0.82	226.859	226.621	10% AEP, 5 min burst, Storm 1
Pipe-36	0.002	0.22	227.138	225.373	10% AEP, 15 min burst, Storm 3
Pipe-35	0.01	0.84	225.373	225.229	10% AEP, 15 min burst, Storm 10
Pipe-11	0.01	0.8	225.229	225.229	10% AEP, 15 min burst, Storm 9
Pipe-12	0.009	0.2	225.225	225.218	10% AEP, 15 min burst, Storm 9
Pipe-8	0.102	1.61	222.824	222.689	10% AEP, 1 hour burst, Storm 7

CHANNEL DETAILS

Name	Max Q	Max V	Due to Storm
	(cu.m/s)	(m/s)	

OVERFLOW ROUTE DETAILS

Name	Max Q U/S N	Max Q D/S S	Safe Q	Max D	Max DxV	Max Width	Max V	Due to Storm
B24-4	0	0	0.346	0	0	0	0	
OF123919	0.001	0.03	0.206	0.079	0.04	1.78	0.57	10% AEP, 5 min burst, Storm 1

B16-5	0.001	0.005	0.215	0.043	0.02	0.56	0.43 10% AEP, 5 min burst, Storm 1
OF123922	0	0	0.24	0	0	0	0
B17-6	0.001	0.035	0.217	0.082	0.05	1.86	0.61 10% AEP, 5 min burst, Storm 1
OF123931	0.005	0.025	0.319	0.07	0.05	1.46	0.81 10% AEP, 5 min burst, Storm 1
B18-7	0.001	0.03	0.257	0.076	0.05	1.66	0.69 10% AEP, 5 min burst, Storm 1
B7-8	0.002	0.091	0.285	0.106	0.09	2.66	0.82 10% AEP, 5 min burst, Storm 1
ATLAN Vor	0.079	0.079					10% AEP, 1 hour burst, Storm 7
Ori ML	0.023	0.023					10% AEP, 1 hour burst, Storm 7
B8-9	0	0	0.327	0	0	0	0
B3-4	0	0.022	0.725	0.057	0.04	1.62	0.91 10% AEP, 15 min burst, Storm 3
B14	0	0	1.265	0	0	0	0
B1	0	0	1.188	0	0	0	0
B20-19	0	0	1.426	0	0	0	0
B19-6	0	0.035	1.413	0.027	0.03	4	1.84 10% AEP, 5 min burst, Storm 1
B21-17	0.008	0.008	1.17	0.021	0.02	4	1.98 10% AEP, 5 min burst, Storm 1
B27-26	0	0	0.658	0	0	0	0
OF123938	0	0.004	0.755	0.042	0.02	0.33	0.57 10% AEP, 15 min burst, Storm 5
B12-13	0	0	0.291	0	0	0	0
B13-8	0.001	0.044	0.174	0.094	0.05	2.25	0.59 10% AEP, 5 min burst, Storm 1
OF123954	0.038	0.038	1.382	0.048	0.03	1.39	0.65 10% AEP, 15 min burst, Storm 5
OF123952	0.024	0.039	1.44	0.054	0.03	1.43	0.65 10% AEP, 15 min burst, Storm 5
OF123956	0.12	0.12	1.22	0.077	0.09	1.61	1.2 10% AEP, 1 hour burst, Storm 7

DETENTION BASIN DETAILS

Name	Max WL	MaxVol	Max Q	Max Q	Max Q
			Total	Low Level	High Level
P 1/2 OSD	225.22	205.7	0.102	0	0.102

Run Log for DRAINS v2024.07.8959.15835 - 23053 v9 20241105

{\colortbl;\red0\green0\blue0;\red192\green0\blue0;}Run Log for DRAINS v2024.07.8959.15835 - 23053 v9 20241105.drn run at 13:41:39 on 5/11/2024 using Watercom Drains v2024.07.8959.15835

No water upwelling from any pit. Freeboard was less than 0.15m at P4/2, P4/3, P4/4, P6/1 Flows were safe in all overflow routes.

DRAINS results prepared from Version 2024.07.8959.15835

PIT / NODE DETAILS				Version 8			
Name	Max HGL	Max Pond	Max Surfac	Max Pond	Min	Overflow	Constraint
		HGL	Flow Arrivi	Volume	Freeboard	(cu.m/s)	
			(cu.m/s)	(cu.m)	(m)		
P6/1	227.57		0.082		0	0.028	Outlet System
P4/4	227.38		0.055		0	0.032	Outlet System
P4/3	227.32		0.156		0	0.119	Outlet System
P4/2	227.22		0.149		0	0.113	Outlet System
P4/1	227.08		0.169		0	0.131	Outlet System
P1/5	226.98		0.25		0	0.131	Outlet System
P1/4	226.77		0.288		0	0.127	Outlet System
P1/3	226.58		0.331		0	0.011	Outlet System
P3/2	227.47		0.012		1.1	0	None
P3/1	227.06		0.007		1.61	0	None
P1/8	227.19		0.01		1.33	0	None
P1/7	227.14		0		0.57	0	None
P1/6	227.01		0		0.04	0	None
P5/1	227.26		0.048		0.01	0.017	Inlet Capacity
P7/2	227.16		0.006		0.74	0	None
P7/1	226.21	226.25	0.018	0.1	0.01	0	Inlet Capacity
P2/2	226.17		0		0.29	0	None
P2/1	226.18		0		0.13	0.002	Inlet Capacity
N LS SE	223.07		0.088				
N LS S	224.06		0.064				
P1/2a	223.12		0				
P1/1	222.65		0.12				

SUB-CATCHMENT DETAILS

Name	Max	Paved	Grassed	Paved	Grassed	Supp.	Due to Storm
	Flow Q	Max Q	Max Q	Тс	Тс	Тс	
	(cu.m/s)	(cu.m/s)	(cu.m/s)	(min)	(min)	(min)	
C PreDev	0.666	0	0.666	5	5	5	2 1% AEP, 10 min burst, Storm 1
C P6/1	0.08	0.046	0.034	5	5	5	2 1% AEP, 5 min burst, Storm 1
C P4/3	0.108	0.108	0	5	5	4	2 1% AEP, 5 min burst, Storm 1
C P4/2	0.015	0.015	0	5	5	5	2 1% AEP, 5 min burst, Storm 1
C P1/5	0.123	0.123	0	5	5	5	2 1% AEP, 5 min burst, Storm 1
C P1/4	0.038	0.038	0	5	5	5	2 1% AEP, 5 min burst, Storm 1
C P1/3	0.053	0.053	0	5	5	5	2 1% AEP, 5 min burst, Storm 1
C P1/2	0.16	0.16	0	5	5	5	2 1% AEP, 5 min burst, Storm 1
C P3/2	0.009	0.004	0.006	5	5	5	2 1% AEP, 10 min burst, Storm 1
C P3/1	0.005	0.003	0.002	5	5	5	2 1% AEP, 5 min burst, Storm 1
C P1/8	0.007	0.004	0.003	5	5	5	2 1% AEP, 5 min burst, Storm 1
C P5/1	0.039	0.039	0	5	5	5	2 1% AEP, 5 min burst, Storm 1
C P7/2	0.004	0.002	0.002	5	5	5	2 1% AEP, 5 min burst, Storm 1
C P7/1	0.014	0.012	0.003	5	5	5	2 1% AEP, 5 min burst, Storm 1
C LS	0.035	0	0.035	5	5	5	2 1% AEP, 10 min burst, Storm 1
C LS West	0.045	0	0.045	5	5	5	2 1% AEP, 10 min burst, Storm 1
C Front LS	0.016	0	0.016	5	5	5	2 1% AEP, 10 min burst, Storm 1

PIPE DETA	ILS				
Name	Max Q	Max V	Max U/S	Max D/S	Due to Storm
	(cu.m/s)	(m/s)	HGL (m)	HGL (m)	
Pipe-31	0.054	1.17	227.511	227.379	1% AEP, 5 min burst, Storm 1
Pipe-18	0.049	0.68	227.359	227.324	1% AEP, 20 min burst, Storm 2
Pipe-17	0.107	1.49	227.287	227.222	1% AEP, 5 min burst, Storm 1
Pipe-20	0.11	1.53	227.183	227.084	1% AEP, 15 min burst, Storm 3
Pipe-19	0.154	2.14	227.031	226.976	1% AEP, 20 min burst, Storm 4
Pipe-22	0.256	2.19	226.887	226.773	1% AEP, 5 min burst, Storm 1
Pipe-21	0.31	2.65	226.688	226.58	1% AEP, 10 min burst, Storm 6
Pipe-7	0.367	3.14	226.388	226.006	1% AEP, 10 min burst, Storm 6
Pipe-34	0.009	0.73	227.415	227.06	1% AEP, 10 min burst, Storm 8
Pipe-14	0.021	0.45	227.06	227.186	1% AEP, 10 min burst, Storm 7
Pipe-27	0.033	0.73	227.167	227.142	1% AEP, 5 min burst, Storm 1
Pipe-26	0.045	0.98	227.099	227.006	1% AEP, 20 min burst, Storm 10
Pipe-24	0.055	1.21	226.986	226.976	1% AEP, 10 min burst, Storm 5
Pipe-28	0.023	0.5	227.104	227.084	1% AEP, 5 min burst, Storm 1
Pipe-36	0.004	0.26	227.162	226.208	1% AEP, 10 min burst, Storm 1
Pipe-35	0.019	0.41	226.195	226.175	1% AEP, 25 min burst, Storm 1
Pipe-11	0.02	0.43	226.175	226.185	1% AEP, 20 min burst, Storm 7
Pipe-12	0.02	0.43	226.134	226.006	1% AEP, 20 min burst, Storm 10
Pipe-8	0.386	2.55	223.122	222.907	1% AEP, 25 min burst, Storm 1

CHANNEL DETAILS

Name	Max Q	Max V	Due to Storm
	(cu.m/s)	(m/s)	

OVERFLOW ROUTE DETAILS

Name	Max Q U/S N	/lax Q D/S Sa	fe Q	Max D	Max DxV	Max Width Max	V	Due to Storm
B24-4	0.028	0.028	1.131	0.066	0.06	1.34	0.89	1% AEP, 10 min burst, Storm 1
OF123919	0.032	0.087	1.509	0.114	0.08	2.94	0.68	1% AEP, 5 min burst, Storm 1

B16-5	0.119	0.124	1.464	0.124	0.09	3.26	0.77 1% AEP, 5 min burst, Storm 1
OF123922	0.113	0.117	1.383	0.117	0.1	3.04	0.83 1% AEP, 5 min burst, Storm 1
B17-6	0.131	0.183	1.46	0.14	0.12	3.79	0.83 1% AEP, 10 min burst, Storm 8
OF123931	0.131	0.161	1.171	0.118	0.13	3.08	1.09 1% AEP, 10 min burst, Storm 7
B18-7	0.127	0.157	1.329	0.126	0.11	3.34	0.91 1% AEP, 20 min burst, Storm 8
B7-8	0.011	0.167	1.258	0.129	0.12	3.44	0.92 1% AEP, 5 min burst, Storm 1
ATLAN Vor	0.087	0.087					1% AEP, 25 min burst, Storm 6
Ori ML	0.284	0.284					1% AEP, 25 min burst, Storm 6
B8-9	0	0	0.331	0	0	0	0
B3-4	0	0.04	1.172	0.058	0.06	1.68	1.01 1% AEP, 10 min burst, Storm 1
B14	0	0	1.457	0	0	0	0
B1	0	0	1.457	0	0	0	0
B20-19	0	0	1.426	0	0	0	0
B19-6	0	0.065	1.413	0.041	0.03	4	2.02 1% AEP, 10 min burst, Storm 8
B21-17	0.017	0.02	1.454	0.026	0.03	4	2.01 1% AEP, 10 min burst, Storm 5
B27-26	0	0.001	0.658	0.009	0	0.1	0 1% AEP, 10 min burst, Storm 1
OF123938	0	0.008	1.587	0.053	0.04	0.43	0.67 1% AEP, 10 min burst, Storm 1
B12-13	0	0	1.23	0	0	0	0
B13-8	0.002	0.078	1.487	0.11	0.07	2.79	0.65 1% AEP, 5 min burst, Storm 1
OF123954	0.076	0.076	1.382	0.072	0.06	1.57	0.82 1% AEP, 10 min burst, Storm 1
OF123952	0.044	0.077	1.44	0.079	0.06	1.63	0.78 1% AEP, 10 min burst, Storm 1
OF123956	0.431	0.431	1.22	0.152	0.27	2.21	1.77 1% AEP. 25 min burst. Storm 6

DETENTION BASIN DETAILS

Name	Max WL	MaxVol	Max Q	Max Q	Max Q
			Total	Low Level	High Level
P 1/2 OSD	226.01	240.3	0.371	0	0.371

Run Log for DRAINS v2024.07.8959.15835 - 23053 v9 20241105

{\colortbl;\red0\green0\blue0;\red192\green0\blue0;}Run Log for DRAINS v2024.07.8959.15835 - 23053 v9 20241105.drn run at 13:44:24 on 5/11/2024 using Watercom Drains v2024.07.8959.15835

Upwelling occurred at: P1/4, P4/4

Freeboard was less than 0.15m at P1/3, P2/1, P1/5, P7/1, P1/6, P4/1, P4/2, P5/1, P4/3, P6/1 Flows were safe in all overflow routes.

At-Source Gross Pollutant Trap

atlan.com.au

The Atlan StormSack is specifically designed for the capture of gross pollutants, sediment, litter, and oil and grease. Ideally suited for storm drain retrofits, the StormSack's unique design allows maintenance to be performed using conventional vacuum suction equipment.

StormSack filtration solutions are highly engineered water quality devices that are deployed directly in the stormwater system to capture contaminants close the surface for ease of maintenance. Easily retrofitted into new or existing structures, StormSack filtration technology is a decentralized approach to stormwater treatment that essentially repurposes traditional site infrastructure and customizes it to meet specific site water quality goals. In this way, it satisfies important objectives of today's LID (Low Impact Development) criteria.

From an operations perspective, catch basins with StormSack filters are also easier and quicker to clean out because pollutants are trapped just under the grate.

APPLICATIONS

- Council storm drain retrofits
- Commercial / retail / residential
- Litter prone urban areas
- Scrap metal / solid waste / oil storage
- Part of treatment train
- Construction sediment / erosion

BENEFITS

- Can be modelled in MUSIC in conjunction with bioretention or other Atlan systems
- Low cost, gross pollutant capture
- Quick and easy installation
- Simple maintenance
- At-source capture
- Adjusts to custom pit sizes

The StormSack was introduced to the Australian market in 2012 and field testing is underway at several locations in South-East Queensland. Laboratory testing has shown capture of 99.99% of gross pollutants up to the bypass flow rate. Further results will be provided as they become available.

Recommended minimum clearance from bottom of StormSack to inside bottom of vault is 50mm. Typical frame adjustability range of 127mm in each direction.

TESTED TREATMENT EFFICIENCIES*

POLLUTANT	EFFICIENCY
Gross Pollutants (GP)	100%
Total Suspended Solids (TSS)	45%
Total Phosphorus (TP)	47%
Total Nitrogen (TN)	25%

*Contact Atlan to confirm approved performance for the project LGA

StormSack is SQIDEP approved after passing Stormwater Australia's rigorous testing and performance assessment process.

HOW IT WORKS

This technology is a post developed stormwater treatment system. The StormSack provides effective filtration of solid pollutants and debris typical of urban runoff, while utilising existing or new storm drain infrastructure. The StormSack is designed to rest on the flanges of conventional catch basin frames and is engineered to suit typical project constraints.

Installation procedures includes removing the storm grate, cleaning the frame of debris and solids, measuring catch basin clear opening and trimming flanges to rest on the grate support ledge. Install StormSack with splash guard under curb opening so the adjustable flanges are resting on the grate support ledge. Install corner filler pieces. Reinstall storm grate directly on support flanges rise shall be no more than 3mm.

MAINTENANCE

Typically the StormSack is serviceable from ground level, and therefore maintenance does not require confined space entry. The unit is designed to be maintained in place with a vacuum hose attached to a sweeper or a vacuum truck. Use only Atlan replaceable parts.

Application	Regulatory Issue	Target Pollutants
Council Storm Drain Retrofits	At-source litter capture	Sediment, Litter, O&G
Commercial/Retail/Residential	Stormwater Compliance	Sediment, Litter, O&G
Litter Prone Urban Areas	Cost effective litter control	Litter ≥ 5 mm
Scrap Metal/Solid Waste/Oil Storage/Etc	Industrial Multi-Sector General Permit	Gross Pollutants, O&G
Part of Treatment Train	Council Stormwater Quality Improvement Targets	Sediment, Litter, O&G
Construction Sediment/Erosion	Sediment Control Plan	Sediment/Erosion Control

Fea	Features					
1.	Aluminium frame					
2.	Black poly surround secured to frame • Can be cut to suit on site					
3.	Reinforced StormSack bag					
4.	Carabiners attach bag to frame for easy service and replacement					

Custom sizes (i.e. 1200x900mm) can be manufactured on short lead times

TECHNICAL DRAWINGS

TECHNICAL DRAWINGS

At-Source Gross Pollutant Trap

oy in water

'We believe clean waterways are a right not a privilege and we work to ensure a Joy in Water experience for you, with your children and grandchildren.'

Andy Hornbuckle

P 1300 773 500 | +61 2 8705 0255 | sales@atlan.com.au ACT | NSW | NT | QLD | SA | TAS | VIC | WA | NZ To contact your local branch visit **www.atlan.com.au**

STORMWATER

atlan.com.au

OVERVIEW

The MegaVault delivers an industry-leading answer for medium to large stormwater detention scenarios.

The inspiration of the MegaVault is based on ancient architecture and fundamental principles of costeffective and efficient stormwater management. These systems have been improved and optimised with the assistance of modern precast concrete technology.

FEATURES

The MegaVault On-site Stormwater Detention (OSD) System meets legislative requirements for on-site detention, and its condensed footprint guarantees the delivery of high-yield usable land area.

This system has been designed and engineered to maximise the desired outcomes of safety-in-design with respect to manufacture, installation and life-cycle maintenance applicable to larger OSD requirements.

MegaVault is a Registered Australian Design (Design no. 202315550).

Just like the Atlan Vault, the MegaVault works hand in hand with Atlan filtration devices to achieve the requirements of Stormwater Quality and Quantity Management Plans to satisfy site design needs for SPP (State Planning Policy), local government and council requirements.

TECHNICAL DATA

SYSTEM INTERNAL HEIGHT (m)	VOLUME PER UNIT(L)
1.0	8.370
1.5	12.565
2.5	20.955
3.0	25.150

* System height can be further tailored to suit site requirements in increments of 100mm up to 3000mm.

MODULE DIMENSION	3600mm L x 2400mm W				
INTERNAL HEIGHT	1000mm to 3000mm				
VOLUME PER MODULE	8.37kL to 25.150 kL				
TRAFFICABLE LOADINGS	20kPa or W80 Wheel Loadings				
MINIMUM COVER	200mm				
MAXIMUM COVER	3000mm (Cover over 3000mm, contact Atlan)				
BEARING CAPACITY	150kPa min				

Standard MegaVault Isometric View

The MegaVault is engineered to meet Australian Standards and is designed to suit 20kPa surcharge or W80 loading criteria with 3m fill. Contact the team at Atlan to collaborate on special projects that require higher loadings or more customised solutions.

The MegaVault system provides unparalleled versatility in overcoming footprint, configuration and depth constraints which leads this system to be one of the most sought after solutions for storing/retaining water on developments by both civil, hydraulic and consulting engineers alike.

The size of each component is designed to maximise freight and installation efficiencies.

BENEFITS

- Cost efficient construction
- Fast fabrication and installation
- Superior structural outcomes
- Improved site efficiencies & safe work practices
- Condensed OSD footprint
- Versatile depth capability
- Superior product quality

APPLICATIONS

This system allows for maximised use of available land by allowing the on-site stormwater detention to be located underneath development sites, carparks, driveways, or parklands.Open road SM1600 rated builds are available by request.

- Residential, commercial and industrial developments
- Retail sites
- Subdivisions
- Urban infrastructure

COMPARISON

7

OSD SYSTEMS	MEGAVAULT	CONVENTIONAL
STRUCTURAL ENGINEERING	All required structural certification provided by Atlan Stormwater and Engineering Partners minimising onsite inspections and increasing construction efficiency.	Structural engineering requires 'Hold Points' and visual inspection to ensure correct construction methods are achieved. Potential delays and risk of trade error is higher.
CONSTRUCTION PROGRAM EFFICIENCIES	Construction timeline savings of up to 90% can be achieved, with a guaranteed reduction of labour required on site.	Multiple trades required to complete the scope providing a slower construction timeline and increased risk of poor weather and delays.
SAFETY	Reduces the amount of labour required to complete the works. Significantly decreased open excavation time. Minimises the requirement of Confined Space Entry during tank construction.	Increased time with an open excavation due to increased sub-contractor involvement. Co- ordination on safety plans and inductions with increased involvement and supervision required. Exposed reinforcement contributing to trip hazards. Confined Space Entry is required.
ENVIRONMENTAL IMPACT	 Minimal construction waste. Decreased excavation time. Decreases risk of silt release. No concrete truck washouts required. 	 Increased construction waste from palletised construction materials to complete the scope. Concrete truck washouts required.
QUALITY	Tanks constructed to ISO9001 Quality Standards. Atlan Stormwater engineering partners provide product 'sign-off'.	Hold points and visual sign off by the project Certified Engineers.
ORGANISATIONS REQUIRED	Atlan Stormwater offer a 'Turnkey' Solution from design and manufacture through to construction.	Multiple trades.

MegaVault

atlan.com.au

atlan.com.au

'We believe clean waterways are a right not a privilege and we work to ensure a Joy in Water experience for

oy in water

you, with your children and grandchildren.'

Andy Hornbuckle

P 1300 773 500 | +61 2 8705 0255 | sales@atlan.com.au ACT | NSW | NT | QLD | SA | TAS | VIC | WA | NZ To contact your local branch visit www.atlan.com.au

Hydrodynamic GPT

atlan.com.au

Overview

The Vortceptor Gross Pollutant Trap (GPT) is a nonblocking vortex style separator that has a unique screen and treatment action producing low vortex conditions resulting in excellent pollution removal performance and resulting high water quality outcomes.

It separates and captures gross pollutants, sediments, silt, total suspended solids, some nutrients and oil and grease.

The single piece Vortceptor GPT is delivered to site fully assembled saving on installation time and crane costs. The fibreglass design can be installed in all types of trafficable zones, including vehicular truck (Class D).^

The Vortceptor is designed to meet requirements for a diverse range of applications. Designed with versatility in mind, these fibreglass reinforced polymer (FRP) GPTs are available in inline and offline configurations to meet your project specifications.

An offline configuration places the separation chamber adjacent to the diversion chamber. This allows bypass to occur and is beneficial in high flow rate applications.

In an inline treatment configuration, the diversion chamber and separation chamber are integrated – with the device situated 'inline' with incoming and outgoing flows. This is often beneficial for retrofit applications in existing drainage systems.

TESTED TREATMENT EFFICIENCIES*

POLLUTANT	EFFICIENCY
Gross Pollutants (GP)	100%
Total Suspended Solids (TSS)	93%
Total Phosphorus (TP)	86%
Total Nitrogen (TN)	49%

*Contact Atlan to confirm approved performance for the project LGA

Vorceptor is SQIDEP approved after passing Stormwater Australia's rigorous testing and performance assessment process.

Applications

- Shopping Precinct
- Commercial Zones
- Recreational Grounds
- Industrial Areas
- Beaches & Park
- Residential Development

Inline Model

The Vortceptor Inline series is useful for constrained sites with a treatment flow rate that is relative to the bypass flow rates. The Inline Vortceptor has a flexible pipe configuration with the outlet pipe being able to rotate in excess of 180° around the system. The Inline Vortceptor is available with or without internal bypass to suit installation on low flow diversions.

Offline Model

The Vortceptor Offline series is used when the bypass flows are high, or greater than the flows required to pass through the Inline range. There are various advantages of the Offline series including the ability to divert treated flow water to a tertiary asset independently to the bypassed stormwater and the ability to adjust the system to cater for trailwater and external catchments.

You can also include:

- 1. Angled inlet/outlet connections
- 2. Multiple pipes or culverts
- 3. Back to back twin units for greater treatment flow requirements
- 4. Bifurcation or splitting of flows

1. Angled up to 45°

2. Multiple pipes or culverts

3. Back to back units

4. Split treated/ bypass flow

Vortex Style GPT Inline Series

The Inline series is manufactured from the standard single tank dia below. Custom systems are also available.

	Dimensions (mm)						Capacities			
Models	Internal Diameter	Overall Width	Depth Below Invert	Manhole Size (mm)	Max Pipe Size (mm)	Sump Capacity (m ³)	Floatables Volume (m ³)	Treatable Flow Rate	Max Flow Rate (L/s)	
INLINE SERIES					()					
SVI.025 (L/R)	1200	1370	1400	600x 600	450	1.2	0.06	26	280	
SVI.055 (L/R)	1800	1970	1650	900x	525	2.7	0.22	55	380	
SVI.055.M (L/R)	2200	2370	1585	900	525	3.2	0.22	55	750	
SVI.100/15 (L/R)	1500	1670	1900		600	3.1	0.20	100	700	
SVI.160/22 (L/R)	2200	2370	2400		750	3.4	0.39	160	940	
SVI.200/22 (L/R)	2200	2370	2900		750	3.1	0.39	200	990	
SVI.300/22 (L/R)	2200	2370	3100	1000	750	4.5	0.83	300	1050	
SVI.400/22 (L/R)	2200	2370	3000	Internal	750	3.4	0.83	400	1180	
SVI.400/25 (L/R)	2500	2670	2900	600x 600	900	5.5	0.83	400	1650	
SVI.400/30 (L/R)	3000	3170	3500		900	10	1.5	400	2500	
SVI.500/30 (L/R)	3000	3170	3500		1050	10	1.5	500	1650	
SVI.500/35 (L/R)	3500	3670	4000		1050	10	1.5	500	1900	

Vortex Style GPT Offline Series

The Offline series is manufactured from the standard single tank dia below. Custom systems are also available.

	Dimensions (mm)				Capacities				
Models	Internal Diameter	Overall Width	Depth below invert	Manhole Size (mm)	Sump Capacity (m³)	Floatables Volume (m³)	Treatable Flow Rate (L/s)	Bypass Flow Rate (L/s)	
OFFLINE SERIES									
SVO.096 (L/R)	1500	1670	1725		2.0	0.35	96	SIGN	
SVO.140 (L/R)	1500	1670	2025		2.3	0.35	140	CIFIC DE	
SVO.180 (L/R)	1500	1670	2325		3.0	0.35	180	PROJECT SPEC	
SVO.220 (L/R)	2200	2350	2800		4.5	1.1	220		
SVO.360 (L/R)	2200	2350	3080	1000 DIA	6.0	1.1	360		
SVO.530 (L/R)	3000	3150	3200	Internal 600x600	8.5	2.8	530		
SVO.800 (L/R)	3000	3150	4200		8.5	2.8	800		
SVO.810 (L/R)	4000	4150	3400		19.3	5.65	800		
SVO.1200 (L/R)	4000	4150	4000		19.3	5.65	1200		
SVO.1600 (L/R)	4000	4150	4600		19.3	5.65	1600		

Inline Model SVI.025

Inline Model SVI.055

Inline Model SVI.100/15

Inline Model SVI.160/22

Inline Model SVI.200/22

Inline Model SVI.300/22

Inline Model SVI.400/22

Inline Model SVI.400/25

Inline Model SVI.400/30

Inline Model SVI.500/30

Inline Model SVI.500/35

Offline Model SVO.140

Offline Model SV0.220

4

Offline Model SVO.530

Offline Model SV0.810

Offline Model SV0.1200

Offline Model SVO.1600

Hydrodynamic GPT

oy in water

'We believe clean waterways are a right not a privilege and we work to ensure a Joy in Water experience for you, with your children and grandchildren.'

Andy Hornbuckle

P 1300 773 500 | +61 2 8705 0255 | sales@atlan.com.au ACT | NSW | NT | QLD | SA | TAS | VIC | WA | NZ To contact your local branch visit www.atlan.com.au